Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Int J Mol Sci ; 24(7)2023 Mar 31.
Artigo em Inglês | MEDLINE | ID: mdl-37047521

RESUMO

In January 2023, the derogation loophole was closed on "emergency authorisations" for the use of three out of five neonicotinoids in all EU states. In this study, we analysed the sorption/desorption behaviour and kinetic parameters of acetamiprid and thiacloprid, the two neonicotinoids that are still approved for use, either regularly or under emergency authorisations in the EU, and widely used worldwide. Sorption and desorption curves in four soils with different organic matter content were analysed using four kinetic models, namely, Lagergren's pseudo first-order model, two-site model (TSM), Weber-Morris intraparticle diffusion model and Elovich's model. Kinetic parameters were correlated to soil physico-chemical characteristics. To determine the mutual influence of soil characteristics and sorption/desorption parameters in the analysed soils, a factor analysis based on principal component analysis (PCA) was performed. Even though the two insecticides are very similar in size and chemical structure, the results showed different sorption/desorption kinetics. The model that best fits the experimental data was TSM. Thiacloprid showed a more rapid sorption compared to acetamiprid, and, in all soils, a higher proportion sorbed at equilibrium. Intra-particle diffusion seemed to be a relevant process in acetamiprid sorption, but not for thiacloprid. Desorption results showed that acetamiprid is more easily and more thoroughly desorbed than thiacloprid, in all soils. The kinetic behaviour differences stem from variations in molecular structure, causing disparate water solubility, lipophilicity, and acid-base properties.


Assuntos
Poluentes do Solo , Adsorção , Neonicotinoides , Solo/química , Cinética
2.
Molecules ; 25(16)2020 Aug 14.
Artigo em Inglês | MEDLINE | ID: mdl-32823941

RESUMO

Rosemary (Rosmarinus officinalis L.) is a Mediterranean medicinal and aromatic plant widely used due to valuable bioactive compounds (BACs) and aromas. The aim of the study was to evaluate the extraction of intracellular compounds from rosemary combining experimental procedure by means of high voltage electrical discharge (HVED), with a theoretical approach using two computational simulation methods: conductor-like screening model for real solvents and Hansen solubility parameters. The optimal HVED parameters were as follows: frequency 100 Hz, pulse width 400 ns, gap between electrodes 15 mm, liquid to solid ratio 50 mL/g, voltage 15 and 20 kV for argon, and 20 and 25 kV for nitrogen gas. Green solvents were used, water and ethanol (25% and 50%). The comparison was done with modified conventional extraction (CE) extracted by magnetic stirring and physicochemical analyses of obtained extracts were done. Results showed that HVED extracts in average 2.13-times higher total phenol content compared to CE. Furthermore, nitrogen, longer treatment time and higher voltage enhanced higher yields in HVED extraction. HVED was confirmed to have a high potential for extraction of BACs from rosemary. The computational stimulation methods were confirmed by experimental study, ethanol had higher potential of solubility of BACs and aromas from rosemary compared to water.


Assuntos
Odorantes/análise , Extratos Vegetais/análise , Extratos Vegetais/isolamento & purificação , Rosmarinus/química , Solventes/química , Fracionamento Químico , Eletricidade , Modelos Teóricos
3.
Foods ; 8(7)2019 Jul 08.
Artigo em Inglês | MEDLINE | ID: mdl-31288471

RESUMO

BACKGROUND: The aim of this study was to evaluate high voltage electrical discharges (HVED) as a green technology, in order to establish the effectiveness of phenolic extraction from olive leaves against conventional extraction (CE). HVED parameters included different green solvents (water, ethanol), treatment times (3 and 9 min), gases (nitrogen, argon), and voltages (15, 20, 25 kV). METHODS: Phenolic compounds were characterized by ultra-performance liquid chromatography-tandem mass spectrometer (UPLC-MS/MS), while antioxidant potency (total phenolic content and antioxidant capacity) were monitored spectrophotometrically. Data for Near infrared spectroscopy (NIR) spectroscopy, colorimetry, zeta potential, particle size, and conductivity were also reported. RESULTS: The highest yield of phenolic compounds was obtained for the sample treated with argon/9 min/20 kV/50% (3.2 times higher as compared to CE). Obtained results suggested the usage of HVED technology in simultaneous extraction and nanoformulation, and production of stable emulsion systems. Antioxidant capacity (AOC) of obtained extracts showed no significant difference upon the HVED treatment. CONCLUSIONS: Ethanol with HVED destroys the linkage between phenolic compounds and components of the plant material to which they are bound. All extracts were compliant with legal requirements regarding content of contaminants, pesticide residues and toxic metals. In conclusion, HVED presents an excellent potential for phenolic compounds extraction for further use in functional food manufacturing.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...